
Abstract

General Description The MAX2058 high-linearity digital-variable-gain amplifier (DVGA) is designed to provide 62dB of total gain range and typical output IP3 and output P1dB levels of +32.3 dBm and +19 dBm , respectively. The device is ideal for a variety of applications, including RFID handheld and portal readers, as well as single and multicarrier 700 MHz to 1200 MHz GSM/EDGE, cdma2000®, WCDMA, and iDEN ${ }^{\circledR}$ base stations. The MAX2058 yields a high level of component integration, which includes two 5-bit, 31dB digital attenuators, a two-stage driver amplifier, a loopback mixer, and a serial interface to control the attenuators. The MAX2058 is pin compatible with the MAX2059 1800 MHz to 2200 MHz DVGA, facilitating an easy design-in for applications where a common PC board layout is used for both frequency bands. The MAX2058 is available in a 40-pin thin QFN package with an exposed paddle. Electrical performance is guaranteed over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

GSM 850/GSM 900 2G and 2.5G EDGE Base-
Station Transmitters and Power Amplifiers
Cellular cdmaOne ${ }^{\text {TM }}$, cdma2000, and Integrated Digital Enhanced Network (iDEN) Base-Station Transmitters and Power Amplifiers
WCDMA 850MHz and Other 3G Base-Station
Transmitters and Power Amplifiers
Transmitter Gain Control
Receiver Gain Control
Broadband Systems
Automatic Test Equipment
Digital and Spread-Spectrum Communication Systems
Microwave Terrestrial Links
RFID Handheld and Portal Readers

SPI is a trademark of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp. cdma2000 is a registered trademark of Telecommunications Industry Association.
iDEN is a registered trademark of Motorola, Inc. cdmaOne is a trademark of CDMA Development Group.
\qquad Features

- +32.3dBm Typical Output IP3
- +19dBm Typical Output 1dB Compression Point
- 700MHz to 1200MHz RF Frequency Range
- 1800MHz to 2200MHz RF Frequency Range (MAX2059)
- 10.5dB Typical Small-Signal Gain
- Includes Two Independent 31dB Attenuator Stages, Yielding 62dB of Total Gain-Control Range with 1dB Steps
- 3-Wire SPI ${ }^{\text {TM }} /$ MICROWIRE $^{\text {TM }}$-Compatible
- Integrated Loopback Mixer for Tx/Rx SelfDiagnostics
- +5V Single-Supply Operation
- External Current-Setting Resistors for Scalable Device Power
- Lead-Free Package Available

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX2058ETL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Thin QFN-EP** $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T4066-3
MAX2058ETL-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Thin QFN-EP** $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T4066-3
MAX2058ETL+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Thin QFN-EP** $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T4066-3
MAX2058ETL+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40 \mathrm{Thin} \mathrm{QFN-EP**}$ $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T4066-3

${ }^{* *} E P=$ Exposed paddle.
+Denotes lead-free package.
T = Tape-and-reel.
Pin Configuration/Functional Diagram appears at end of data sheet.

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to GND	-0.3V to +5.5 V
RSET1, RSET2	+1.2 V to +4.0 V
LBBIAS	(V CC -1.5 V) to +5.5 V
LB_EN, DATA, $\overline{C S}, ~ C L K$	-0.3V to (VCC +0.3 V)
ATTEN_INA, ATTEN_INB	ATTEN_OUTB
Input Power	$+24 \mathrm{dBm}$
AMPIN, Differential LO Inp	2 dBm
Continuous Power Dissip	
40-Pin TQFN (derated	$\left.+70^{\circ} \mathrm{C}\right) \ldots . . .2100 \mathrm{~mW}$

Operating Temperature Range (Note A) | $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :---: |
| $150^{\circ} \mathrm{C}$ |Temperature

JJC $10^{\circ} \mathrm{C} / \mathrm{W}$
ӨJA. $38^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note A: TC is the temperature on the exposed paddle of the package.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX2058 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{R} 1=1.2 \mathrm{k} \Omega, \mathrm{R} 2=3.92 \mathrm{k} \Omega, \mathrm{R} 3=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ and $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC	Reference to Vcc, VCCLB, VCCLOGIC, VCCBIAS1, VCCBIAS2, VCCAMP	4.75	5.0	5.25	V
Total Supply Current	ICC	LB mixer disabled (LB_EN = 1)		134	156	mA
		LB mixer enabled (LB_EN = 0)		158	186	
LOGIC INPUTS (DATA, $\overline{\mathbf{C S}}, \mathrm{CLK}, \mathrm{LB}$ _EN)						
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2.4			V
Input Low Voltage	VIL				0.8	V
Input Current with Logic-High	$\mathrm{IIH}_{\mathrm{H}}$			0.01		$\mu \mathrm{A}$
Input Current with Logic-Low	IIL			0.01		$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

(MAX2058 Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq \mathrm{fRF}_{\mathrm{R}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{LO}} \leq 100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{PLO}=-6 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=$ 45 MHz , fLBOUT $=\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{LO}}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RF Frequency (Note 2)		MAX2058		700		1200	MHz
		MAX2059		1800		2200	
Small-Signal Gain	Av	$\mathrm{frF}=940 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		8.4	10.5	12.8	dB
Gain Variation vs. Temperature		All attenuation settings	$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$	-0.014			$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
			$\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-0.021			
Output Power	Pout	$\mathrm{P}_{\text {IN }}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		8.4	10.5	12.8	dBm
Output Power Flatness		$P \mathrm{IN}=0 \mathrm{dBm}$	800 MHz to 900 MHz		0.13		dB
			900 MHz to 1000 MHz		-0.52		
Attenuation Range					62		dB
Output Third-Order Intercept Point	OIP3	$\begin{aligned} & \text { Two tones: fRF1 }=940 \mathrm{MHz}, f \mathrm{fRF} 2=941 \mathrm{MHz}, \\ & \text { Pout1 }=\text { Pout2 }=+5 \mathrm{dBm} \end{aligned}$			32.3		dBm

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2058 Typical Application Circuit, $\mathrm{V} C \mathrm{C}=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq \mathrm{fLO} \leq 100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PIN}=0 \mathrm{dBm}, \mathrm{fRF}=940 \mathrm{MHz}, \mathrm{PLO}=-6 \mathrm{dBm}, \mathrm{fLO}=$ 45 MHz , flBOUT $=\mathrm{f}_{\mathrm{RF}}-\mathrm{f}_{\mathrm{fO}}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

700MHz to 1200 MHz High-Linearity,
 SPI-Controlled DVGA with Integrated Loopback Mixer

AC ELECTRICAL CHARACTERISTICS (continued)
(MAX2058 Typical Application Circuit, $\mathrm{V} C \mathrm{C}=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq \mathrm{fLO}_{\mathrm{LO}} \leq 100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PIN}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{PLO}=-6 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=$ 45 MHz , $\mathrm{f}_{\text {LBOUT }}=\mathrm{f}_{\mathrm{RFF}}-\mathrm{f}_{\mathrm{LO}}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOOPBACK MIXER							
LO Frequency (Note 2)	flo			40		100	MHz
LO Input Power	PLo				-6	0	dBm
Output Power (Note 6)		$\mathrm{P}_{\text {IN }}=+5 \mathrm{dBm}, \mathrm{frFF}=940 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		-14.7	-12.7	-10.8	dBm
Gain Accuracy		$\begin{aligned} & \text { PIN }=+5 \mathrm{dBm}, \mathrm{TC} \\ & =-40^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$	800 MHz to 900 MHz		± 1.7		dB
			900 MHz to 1000 MHz		± 1.7		
Output Third-Order Intercept Point (Note 6)	OIP3	Two tones: frF $=940 \mathrm{MHz}$, fRF2 $=940.2 \mathrm{MHz}$,$\mathrm{PIN} 1=\mathrm{PIN}_{2}=+2 \mathrm{dBm}, \mathrm{~T} \mathrm{C}=+25^{\circ} \mathrm{C}$			10.6		dBm
Output Noise Floor		$\mathrm{PIN}=+5 \mathrm{dBm}$			-137		$\mathrm{dBc} / \mathrm{Hz}$
ON/OFF Switching Time		LB_EN enable time			0.12		$\mu \mathrm{s}$
		LB_EN disable time			0.12		
LBOUT to ATTEN_OUTB Isolation		Mixer enabled, attenuators A and B both set to $31 \mathrm{~dB}, \mathrm{P}_{\mathrm{IN}}=+5 \mathrm{dBm}$			67		dB
ATTEN_OUTB to LBOUT Isolation		Mixer disabled, PIN = 0dBm			50		dB
Output Return Loss		Mixer enabled, 50Ω load			22		dB
		Mixer disabled, 50Ω load			23		
LO Port Return Loss		50Ω source			32		dB
SERIAL PERIPHERAL INTERFACE (SPI)							
Maximum Clock Speed					38		MHz
Data to Clock Setup Time	tcs				1		ns
Data to Clock Hold Time	ter				9		ns
Clock to $\overline{\mathrm{CS}}$ Setup Time	tes				4		ns
$\overline{\text { CS Positive Pulse Width }}$	tew				18		ns
$\overline{\mathrm{CS}}$ Negative Pulse Width	tewn				24		ns
CLOCK Pulse Width	tcw				13		ns

Note 1: All limits include external component losses. Output measurements taken at RFOUT or LBOUT ports of the Typical Application Circuit.
Note 2: Operating outside this range is possible, but with degraded performance of some parameters.
Note 3: Compression point characterized. It is advisable not to continuously operate the VGA RF input above +15 dBm .
Note 4: Input RF source contribution to spurious emissions (Agilent ESG 4435B, PSA E4443A): 200kHz $=-39.2 \mathrm{dBc}$, $400 \mathrm{kHz}=-73.5 \mathrm{dBc}, 600 \mathrm{kHz}=-83.2 \mathrm{dBc}, 1.2 \mathrm{MHz}=-85.7 \mathrm{dBc}$
Note 5: No SPI clock input applied.
Note 6: Guaranteed by design and characterization.

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

700MHz to 1200MHz High-Linearity,
 SPI-Controlled DVGA with Integrated Loopback Mixer

__Typical Operating Characteristics (continued)
(MAX2058 Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq \mathrm{fLO}_{\mathrm{LO}} \leq 100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=45 \mathrm{MHz}, \mathrm{f} \mathrm{fBOUT}=$ $f_{R F}-f_{L O}$, and $T_{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

Typical Operating Characteristics (continued)
(MAX2058 Typical Application Circuit, $\mathrm{VCC}=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq f_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq f \mathrm{fO} \leq 100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{fLO}=45 \mathrm{MHz}, \mathrm{f}$ LBOUT $=$ $f_{R F}-f_{L O}$, and $T_{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

(MAX2058 Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq \mathrm{fLO}_{\mathrm{LO}} \leq 100 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=45 \mathrm{MHz}, \mathrm{fLBOUT}=$ $f_{R F}-f_{L O}$, and $T_{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

Typical Operating Characteristics (continued)

(MAX2058 Typical Application Circuit, $\mathrm{VCC}=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq f_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq f \mathrm{fO} \leq 100 \mathrm{MHz}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=940 \mathrm{MHz}, \mathrm{fLO}=45 \mathrm{MHz}, \mathrm{f}$ LBOUT $=$ $f_{R F}-f_{L O}$, and $T_{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ATTEN B ONLY
ABS ACCURACY vs. RF FREQUENCY
(NMT 450MHz BAND)

700MHz to 1200MHz High-Linearity,
 SPI-Controlled DVGA with Integrated Loopback Mixer

(MAX2058 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , digital attenuators set for maximum gain, $700 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 1200 \mathrm{MHz}$, $40 \mathrm{MHz} \leq f \mathrm{fO} \leq 100 \mathrm{MHz}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{PIN}=0 \mathrm{dBm}, \mathrm{fRF}=940 \mathrm{MHz}, \mathrm{fLO}=45 \mathrm{MHz}$, fLBOUT $=$ $f_{R F}-f_{L O}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ATTEN B ONLY
REL ACCURACY vs. RF FREQUENCY

SUPPLY CURRENT vs. SUPPLY VOLTAGE (MIXER DISABLED)

ATTEN B ONLY
REL ACCURACY vs. RF FREQUENCY (NMT 450MHz BAND)

SUPPLY CURRENT vs. SUPPLY VOLTAGE (MIXER ENABLED)

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

Pin Description

PIN	NAME	FUNCTION
1	LO+	Loopback Mixer Local Oscillator Positive Input
2	LO-	Loopback Mixer Local Oscillator Negative Input
3	VCCLB	Loopback Mixer Supply Voltage. +5 V supply for the internal loopback mixer. Bypass to GND with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
4	LBOUT	Loopback Mixer RF Output. Internally matched to 50 . AC-couple with a capacitor. $_{\text {d }}$
5	LB_EN	Loopback Mixer Logic Input. Set to logic-low 0 to enable the mixer. Set to logic-high 1 to disable the mixer.
6	DATA	SPI Digital Data Input
7	CLK	SPI Clock Input
8	$\overline{\mathrm{CS}}$	SPI Chip-Select Input
9	VCCLOGIC	Logic Supply Voltage. +5 V supply for the internal logic circuitry. Bypass to GND with 100 pF and $0.1 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
$\begin{gathered} 10,11,13, \\ 14,16,17, \\ 19,22,24, \\ 25,26,30, \\ 32,34,35, \\ 37,38 \end{gathered}$	GND	Ground
12	ATTEN_OUTB	Attenuator B Output. Internally matched to 50,.
15	VCC	Attenuator B Supply. +5 V supply for attenuator B. Bypass to GND with 100 pF and 0.01μ F capacitors as close as possible to the pin.
18	ATTEN_INB	Attenuator B Input. Internally matched to 50 .
20	RSET2	Output Amplifier Bias-Current-Setting Resistor. Sets the bias current for the output amplifier stage. Connect a $3.92 \mathrm{k} \Omega$ resistor to ground.
21	VCCBIAS2	Bias Circuit Supply Voltage. +5 V supply for the internal bias circuitry. Bypass to GND with 1000pF and $0.1 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
23	AMPOUT	RF Amplifier Output. Internally matched to 50Ω.
27	VCCAMP	RF Amplifier Supply Voltage. +5 V supply for the RF amplifier. Bypass to GND with 1000 pF and $0.1 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
28	AMPIN	RF Amplifier Input. Internally matched to 50Ω.
29	VCCBIAS1	Bias Circuit Supply Voltage. +5 V supply for the internal bias circuitry. Bypass to GND with 1000pF and $0.1 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
31	RSET1	Input Amplifier Bias-Current-Setting Resistor. Sets the bias current for the input amplifier stage. Connect a $1.2 \mathrm{k} \Omega$ resistor to ground.
33	ATTEN_OUTA	Attenuator A Output. Internally matched to 50Ω.
36	VCC	Attenuator A Supply Voltage. +5 V supply for attenuator A . Bypass to GND with 100 pF and $0.01 \mu \mathrm{~F}$ capacitors as close as possible to the pin.
39	ATTEN_INA	Attenuator A Input. Internally matched to 50 .
40	LBBIAS	Loopback Mixer Bias-Current-Setting Resistor. Sets the bias current for the mixer. Connect a $2 k \Omega$ resistor to ground.
EP	GND	Exposed Ground Paddle. Solder the exposed paddle to GND using multiple vias.

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

Detailed Description

The MAX2058 high-linearity DVGA consists of two 5-bit, 31dB digital attenuators, a fixed-gain two-stage driver amplifier, a loopback mixer, and a serial interface to control the attenuators. This high level of component integration makes the MAX2058 ideal for base-station transmitter applications. The MAX2058 is designed to operate in the 700 MHz to 1200 MHz frequency ranges. The overall cascaded performance of the MAX2058 produces a typical 10.5dB gain, a +32.3 dBm OIP3, a 19 dBm OP1dB, and a total 62dB gain-control range.

5-Bit Attenuators

The MAX2058 integrates two 5-bit digital attenuators to achieve a high dynamic range. Each attenuator has a 31 dB control range, a 1 dB step size, and is programmed with the 3 -wire SPI. See the Applications Information section and Table 1 for attenuator programming details. The attenuators can be used for both static and dynamic power control.

Table 1. Attenuator Programming

ATTENUATOR A (5 MSBs)	ATTENUATOR B (5 LSBs)
Bit $9=16 \mathrm{~dB}$ step	Bit $4=16 \mathrm{~dB}$ step
Bit $8=8 \mathrm{~dB}$ step	Bit $3=8 \mathrm{~dB}$ step
Bit $7=4 \mathrm{~dB}$ step	Bit $2=4 \mathrm{~dB}$ step
Bit $6=2 \mathrm{~dB}$ step	Bit $1=2 \mathrm{~dB}$ step
Bit $5=1 \mathrm{~dB}$ step	Bit $0=1 \mathrm{~dB}$ step

Figure 1. SPI Timing Diagram

Driver Amplifier

The MAX2058 includes a two-stage medium power amplifier with a fixed 17.5 dB gain. The driver amplifier circuit is optimized for high linearity and medium output power capability for the 800 MHz to 1000 MHz frequency range. The driver amplifier is intended to amplify a modulated signal and drive a high-power amplifier in base-station transmitters. In a typical application, the driver amplifier is cascaded in between the two digital attenuators. See the Typical Application Circuit.
The two-stage amplifier stage can be disabled for applications where only the digital attenuators and/or loopback mixer are used. To disable the two-stage amplifier, ground or leave unconnected the amplifier supplies VCCBIAS2, VCCAMP, VCCBIAS1, and also the inputs for setting the amplifier bias currents RSET1, RSET2. This reduces the supply current by approximately 132 mA under typical conditions.

Loopback Mixer

The MAX2058 loopback mixer uses a double-balanced active architecture designed to operate with a 700 MHz to 1200 MHz RF frequency range, and a 40 MHz to 100 MHz LO frequency range. The RF port of the mixer is connected internally (with an on-chip switch) to the input of the first attenuator stage. The mixer's IF port is matched for a single-ended 50Ω impedance, while the LO port requires a differential input impedance of 100Ω.
The loopback mixer facilitates a self-diagnostic mode for cellular transceivers, whereby the Tx band signal at the input of the mixer can be translated up or down to the corresponding Rx band. This translated signal can then be fed back to the radio's receiver for complete $T x / R x$ loop diagnostics. The loopback mixer is enabled and disabled with LB_EN. Set LB_EN to a logic-low 0 to enable the mixer, set LB_EN to a logic-high 1 to disable the mixer.

Applications Information

SPI Interface and Attenuator Settings

The two 5-bit attenuators are programmed with the 3wire SPI/MICROWIRE-compatible serial interface using 10-bit words. Bit 9 of the 10-bit data is shifted in first, along with all remaining data bits, on the rising edge of the clock regardless of $\overline{\mathrm{CS}}$ being high or low. Once all the data bits are shifted in, all will be sent to the attenuators on the rising edge of $\overline{\mathrm{CS}}$, thus changing the attenuation state. For standard SPI operation, pull $\overline{\mathrm{CS}}$ low for the duration of a valid 10-bit data set (tEWN). This $\overline{\mathrm{CS}}$ negative pulse width includes the setup time of the rising clock edge to $\overline{\mathrm{CS}}$ transitioning high (tES). See Figure 1.

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

The 5 MSBs of the 10-bit word program attenuator A, and the 5 LSBs of the 10-bit word program attenuator B. Each bit sets the attenuators to a corresponding attenuation level. For example, logic-low 0 for bit 5 and bit 0 of attenuator A and B, respectively, sets both attenuators at 1dB. 00000 configures both attenuators for 31 dB attenuation and 11111 sets for OdB attenuation. See Table 1 for programming details.

External Bias

Bias currents for the two-stage amplifier and the loopback mixer are set and optimized with external resistors. Resistor R1 (pin 31) sets the bias current for the input amplifier, R2 (pin 20) sets the bias current for the output amplifier, and R3 (pin 40) sets the bias for the loopback mixer. The external biasing resistor values can be increased for reduced current operation at the expense of performance. Contact the factory for details.

Board Layout
The pin configuration of the MAX2058 has been optimized to facilitate a very compact physical layout of the device and its associated discrete components.

The exposed paddle (EP) of the MAX2058's thin QFNEP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX2058 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

Table 2. Component List Referring to the Typical Application Circuit

COMPONENT	VALUE	DESCRIPTION
C1, C4, C10, C13, C16	$0.1 \mu \mathrm{~F}$	Microwave capacitors (0603)
C2, C5, C8, C17	100 pF	Microwave capacitors (0402)
C3, C6, C14, C19	47 pF	Microwave capacitors (0402)
C7, C18	$0.01 \mu \mathrm{~F}$	Microwave capacitors (0402)
C9, C12, C15	1000 pF	Microwave capacitors (0402)
C11	3.9 pF	Microwave capacitor (0402)
R1	$1.2 \mathrm{k} \Omega$	$\pm 1 \%$ resistor (0402)
R2	$3.92 \mathrm{k} \Omega$	$\pm 1 \%$ resistor (0402)
R3	$2.0 \mathrm{k} \Omega$	$\pm 1 \%$ resistor (0402)
R4	110Ω	$\pm 1 \%$ resistor (0402)
T1	$2: 1$	RF transformer (100:50) Mini-Circuits TC2-1T
U1	-	MAX2058 MAXIM IC

Figure 2. Direct Conversion Transmitter for GSM/EDGE Basestations

700MHz to 1200 MHz High-Linearity,
 SPI-Controlled DVGA with Integrated Loopback Mixer

Direct-Conversion Base-Station Transmitter

The MAX2058/MAX2059 are designed to interface directly with Maxim's direct-conversion quadrature modulators and high-speed DACs to provide a complete solution for GSM/EDGE base-station transmitter applications. See Figure 2. The MAX2058/MAX2059,
together with the MAX2021/MAX2022/MAX2023* directconversion modulators/demodulators, the MAX5873 dual-channel DAC, and the MAX4395 quad amplifier, form an ideal total transmitter lineup. This overall system is highly efficient and low cost, while maintaining high linearity and low noise performance.

Typical Application Circuit

700MHz to 1200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer

[^0]Package Information
For the latest package outline information, go to www.maxim-ic.com/packages.

[^1]
[^0]: PROCESS: SiGe BiCMOS

[^1]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

